Case reports and clinical studies:
Chen CP et al. A 5.6-Mb deletion in 15q14 in a boy with speech and languagedisorder, cleft palate, epilepsy, a ventricular septal defect, mental retardation and developmental delay. European Journal of Medical Genetics 2008, 51(4), 368–372. https://doi.org/10.1016/j.ejmg.2008.02.011
Crowley MA et al. Further evidence for the possible role of MEIS2 in the development of cleft palate and cardiac septum. American Journal of Medical Genetics. Part A 2010, 152A(5), 1326–1327. https://doi.org/10.1002/ajmg.a.33375
Douglas G et al. De novo missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features. American Journal of Medical Genetics. Part A 2018, 176(9), 1845–1851. https://doi.org/10.1002/ajmg.a.40368
Erdogan F et al. Characterization of a 5.3 Mb deletion in 15q14 by comparative genomic hybridization using a whole genome “tiling path” BAC array in a girl with heart defect, cleft palate, and developmental delay. American Journal of Medical Genetics. Part A 2007, 143A(2),172–178. https://doi.org/10.1002/ajmg.a.31541
Fujita A et al. De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux. Journal of Human Genetics 2016, 61(9), 835–838. https://doi.org/10.1038/jhg.2016.54
Gangfuß A et al. Intellectual disability associated with craniofacial dysmorphism, cleft palate, and congenital heart defect due to a de novo MEIS2 mutation: A clinical longitudinal study. Am J Med Genet Part A. 2021; 185A:1216–1221. https://doi.org/10.1002/ajmg.a.62070
Giliberti A et al. MEIS2 gene is responsible for intellectual disability,cardiac defects and a distinct facial phenotype. European Journal of Medical Genetics 2020, 63(1), 103627. https://doi.org/10.1016/j.ejmg.2019.01.017
Johansson S et al. Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. American Journal of Medical Genetics. Part A 2014, 164A(7), 1622–1626. https://doi.org/10.1002/ajmg.a.36498
Louw JJ et al. MEIS2 involvement in cardiac development, cleft palate, and intellectual disability. American Journal of Medical Genetics. Part A 2015, 167A(5), 1142–1146. https://doi.org/10.1002/ajmg.a.36989
Smith JE et al. Chromosomal mapping to 15q14 and expression analysis of the human MEIS2 homeobox gene. Mamm Genome 1997, Dec;8(12)951-952 https://doi.org/10.1007/s003359900621
Verheije R et al. Heterozygous loss-of-function variants of MEIS2 cause a triad of palatal defects, congenital heart defects, and intellectual disability. European Journal of Human Genetics 2019, 27(2), 278–290. https://doi.org/10.1038/s41431-018-0281-5
Preclinical models and studies (selection):
Face, jar, palate:
Machon O et al. Meis2 is essential for cranial and cardiac neural crest development. BMC Dev Biol. 2015, 15:40. doi: 10.1186/s12861-015-0093-6. PMID: 26545946
Wang L et al. The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice. J Biol Chem. 2020, 295(16):5449-5460. doi: 10.1074/jbc.RA120.012684. PMID: 32169905
Brain:
Agoston Z et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development. 2014, 141(1):28-38. doi: 10.1242/dev.097295. PMID: 24284204
Frazer S et al. Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nature Commun. 2017, 8:14219. doi: 10.1038/ncomms14219. PMID: 28134272
Jakovcevski M et al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci. 2015, 35(13):5097-108. doi: 10.1523/JNEUROSCI.3004-14.2015. PMID: 25834037
Kolb J et al. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors. Stem Cell Reports. 2018, 10(4):1184-1192. doi: 10.1016/j.stemcr.2018.03.010. PMID: 29641989
Vitobello A et al. Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell. 2011, 20(4):469-82. doi: 10.1016/j.devcel.2011.03.011. PMID: 21497760
Heart:
Paige SL et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012, 151(1):221-32. doi: 10.1016/j.cell.2012.08.027. PMID: 22981225
Limb:
Capdevila J et al. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol Cell. 1999, 4(5):839-49. doi: 10.1016/s1097-2765(00)80393-7. PMID: 10619030
Delgado I et al. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat Commun. 2021, 12(1):3086. doi: 10.1038/s41467-021-23373-9. PMID: 34035267
Fischer ES et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014, 512(7512):49-53. doi: 10.1038/nature13527. Epub 2014 Jul 16. PMID: 25043012
Mercader N et al. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development. 2000, 127(18):3961-70. PMID: 10952894
Yakushiji-Kaminatsui N et al. RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression. Development. 2016, 143(2):276-85. doi: 10.1242/dev.127506. PMID: 26674308
Eye:
Conte I et al. miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15491-6. doi: 10.1073/pnas.0914785107.
Heine P et al. Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate retina development. Development. 2008 Mar;135(5):805-11. doi: 10.1242/dev.012088. PMID: 18216174
Zhang X et al. Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev. 2002, 16(16):2097-107. doi: 10.1101/gad.1007602. PMID: 12183364
Ear:
Durán Alonso MB et al. Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea. Front Cell Dev Biol. 2021, 9:679325. doi: 10.3389/fcell.2021.679325. PMID: 34124068
Genomic, mechanistic:
Amin S et al. Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev Cell, 2015, 32(3):265-77. doi: 10.1016/j.devcel.2014. PMID: 25640223
Hau SC et al. MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1. J Cell Biol. 2017, 216(9):2715-2729. doi: 10.1083/jcb.201701154. PMID: 28739678
Penkov et al. Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. Cell Rep. 2013, 3(4):1321-33. doi: 10.1016/j.celrep.2013.03.029. PMID: 23602564